Freeze dried chitosan/platelet-rich-plasma implants improve marrow stimulated cartilage repair in rabbit chronic defect model

G. Dwivedi, A. Chevrier, C.D. Hoemann, M.D. Buschmann

INTRODUCTION

Bone Marrow Stimulation (BMS) by drilling or microfracture improves knee joint function but elicits incomplete repair. Liquid chitosan (CS)-glycerol phosphate/blood clots have previously been shown to promote cell recruitment, transient vascularization, subchondral bone remodeling and improve cartilage repair following BMS in acute cartilage repair models [1,2]. Platelet-rich-plasma (PRP) contains four-fold concentration of growth factors and cytokines and has been shown to improve recruitment and chondrogenic potential of subchondral mesenchymal stem cells (MSCs). We hypothesize that augmentation of MS with implants composed of freeze-dried chitosan solubilized in PRP would improve repair response in a more clinically relevant rabbit chronic defect model.

METHODS

Surgery 1 Retain CC

4 weeks

Surgery 2 Debride CC

Repair of chronic defect

BMS by drilling

(0.9mm wide X 6 mm deep)

Control (BMS+PRP)

Treatment (BMS+F/D Chitosan/PRP)

(1% (w/v) chitosan (36.6 kDa and 60.2% DDA)+1% (w/v) trehalose as lyoprotectant and 42.2 mM CaCl2 as clot activator)

8 weeks

Freeze dried chitosan/platelet-rich-plasma implants improve marrow stimulated cartilage repair in rabbit chronic defect model

RESULTS

Characterization of chronic defect

Macroscopic appearance

Fig. 2. Assessment of fresh defect, chronic defect after 4 weeks development, chronic defect treated with BMS+CS/PRP implant and chronic defect treated with BMS alone, both 3 weeks after treatment of the chronic defect by macroscopic and histopathological analysis.

Debridement was not homogenous and varying levels of calcified cartilage (CC) and debrided bone (DB) were seen in freshly debrided defects.

After 4 weeks, chronic defects showed evidence of partial spontaneous repair (SR) in some areas along with tufts of calcified cartilage (CC), granulation tissue formation (GT) and enlarged drill holes were seen in presence of CS+PRP implants.

Fibrocartilagenous repair and endochondral ossification (EO) process were seen after 3 weeks of BMS alone, associated with chondrocyte hypertrophy (HT) and vascular invasion (VI).

Red dotted lines represent original drill holes; hole enlargement and wound blooming is apparent in defect treated with BMS+CS/PRP.

Fig. 4. (a). Mean %Col-II was significantly higher for BMS+CS/PRP versus BMS+PRP group.

(b). Mean %Sat-O was higher for repair tissues in defects treated with BMS+CS/PRP versus defects treated with BMS+PRP, although this difference was not significant.

8 week repair-Macroscopic assessment

Fig. 3. (a-d): Macroscopic assessment of best and worst repair with BMS+CS/PRP (a,c) and BMS+PRP (b,d). Control defects showed evidence of fibrocartilagenous or fibrous repair and improved repair was observed in defects treated with BMS+CS/PRP. BMS: (e): Mean macroscopic ICRS score was higher in BMS+CS/PRP group versus BMS+PRP group.

Table 1: Fewer grade II and more grade IV repair were seen with BMS+CS/PRP versus control.

8 week repair-Histological assessment

Fig. 5. Histopathological assessment of best and worst repair generated by BMS+CS/PRP and BMS+PRP. (a-b): Sat-O staining for best (a,b,e,f) and worst (c,d,g,h) repair outcomes; (g-p): Coll-II immunostaining for best (j,m,n) and worst (l,o,p) repair outcomes.

Better repair was confirmed by higher deposition of collagen type II and GAGs in defects treated with BMS+CS/PRP implants compared to BMS+PRP.

Fig. 7. (a-j). Mean O’Driscoll score was significantly higher for repair tissues in BMS+CS/PRP group versus BMS+PRP. (k): Significat differences (?) were observed between treatments, and scores for adjacent cartilage (p=0.006), cellular changes (p=0.002), cell clusters (p=0.009), structural integrity (p=0.0001), surface integrity (0.05) and thickness of repair tissue (p=0.002) were significantly higher for defects treated with BMS+CS/PRP compared to BMS+PRP.

CONCLUSION

Freeze-dried CS formulations, which are expected to have a long shelf life, can be solubilized in PRP to form injectable implants that coagulate in situ. CS/PRP implants have been shown to reside for several weeks in vivo and to have significant bioactivity, in contrast to PRP implants which are quickly degraded in a day [4]. Chronic defects were more challenging to treat and CS/PRP implants improved cartilage repair compared to BMS+PRP. The superior bioactivity of CS/PRP implants likely arise from negligible clot retraction, sustained release of PRP derived growth factors, increased recruitment and differentiation of MSCs [4].

REFERENCES


Acknowledgements

This work was supported by the Canadian Institutes of Health Research (CIHR) and OrthoRTI

[contact: michael.buschmann@polymtl.ca, (514) 340-4711 ext 4931]